Please check the examination details below before entering your candidate information
 Tuesday 21 May 2019

\section*{| Morning (Time: 2 hours) | Paper Reference 4MA1/1 H |
| :--- | :--- |}

Mathematics A

Level 1/2
Paper 1H
Higher Tier

You must have:

Total Marks
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.

Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

International GCSE Mathematics

Formulae sheet - Higher Tier

Arithmetic series Sum to n terms, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$	Area of trapezium $=\frac{1}{2}(a+b) h$
The quadratic equation The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	
Trigonometry	In any triangle $A B C$ Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ Area of triangle $=\frac{1}{2} a b \sin C$
Volume of cone $=\frac{1}{3} \pi r^{2} h$ Curved surface area of cone $=\pi r l$	Volume of prism $=$ area of cross section \times length
Volume of cylinder $=\pi r^{2} h$ Curved surface area of cylinder $=2 \pi r h$	Volume of sphere $=\frac{4}{3} \pi r^{3}$ Surface area of sphere $=4 \pi r^{2}$

Answer ALL TWENTY FOUR questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.

1 Show that $4 \frac{2}{3} \div 1 \frac{1}{9}=4 \frac{1}{5}$

2 Jalina left her home at 1000 to cycle to a park.
On her way to the park, she stopped at a friend's house and then continued her journey to the park.
Here is the distance-time graph for her journey to the park.

Distance from

 home (km)
(a) On her journey to the park, did Jalina cycle at a faster speed before or after she stopped at her friend's house?
Give a reason for your answer.
\qquad
\qquad
\qquad

Jalina stayed at the park for 45 minutes.
She then cycled, without stopping, at a constant speed of $16 \mathrm{~km} / \mathrm{h}$ from the park back to her home.
(b) Show all this information on the distance-time graph.
(c) Work out Jalina's average cycling speed, in kilometres per hour, for the complete journey to the park and back.
Do not include the times when she was not cycling in your calculation.
Give your answer correct to 1 decimal place.
(a) Simplify $e^{9} \div e^{5}$
(b) Simplify $\left(y^{2}\right)^{8}$
(c) Expand and simplify $(x+9)(x-2)$
(d) Factorise fully $16 c^{4} p^{2}+20 c p^{3}$
(a) Complete the table of values for $y=x^{2}-3 x-1$

x	-2	-1	0	1	2	3	4
y			-1		-3		3

(b) On the grid, draw the graph of $y=x^{2}-3 x-1$ for all values of x from -2 to 4

(2)
(Total for Question 4 is $\mathbf{4}$ marks)
$5 \quad$ Becky has a biased 6-sided dice.
The table gives information about the probability that, when the dice is thrown, it will land on each number.

Number	1	2	3	4	5	6
Probability	$2 x$	0.18	$2 x$	$3 x$	0.26	x

Becky is going to throw the dice 200 times.
Work out an estimate for the number of times that the dice will land on an even number.

The wood has density $0.7 \mathrm{~g} / \mathrm{cm}^{3}$
Work out the mass of the cuboid.

7
(a) Write 5.7×10^{6} as an ordinary number.
(b) Write 0.004 in standard form.
(c) Work out $\frac{2 \times 10^{4}+3 \times 10^{5}}{6.4 \times 10^{-2}}$

8 On 1st January 2016 Li bought a boat for $\$ 170000$
The value of the boat depreciates by 8% per year.
Work out the value of the boat on 1st January 2019
Give your answer correct to the nearest dollar.

9 The diagram shows a shape made from a right-angled triangle and a semicircle.

Diagram NOT accurately drawn

$A C$ is the diameter of the semicircle.
$B A=B C=6 \mathrm{~cm}$
Angle $A B C=90^{\circ}$
Work out the area of the shape.
Give your answer correct to 1 decimal place.
cm^{2}
$A=2^{n} \times 3 \times 5^{m}$
Write $8 A$ as a product of powers of its prime factors.
$C=b-a$
$a=6$ correct to the nearest integer
$b=15$ correct to the nearest 5
Work out the upper bound for the value of C
Show your working clearly.
(a) Factorise $2 x^{2}-7 x+6$
(b) Solve $\frac{4 m+9}{3}=7-2 m$

Show clear algebraic working.
$m=$. \qquad
(c) Write $\frac{\sqrt[4]{y}}{y}$ in the form y^{b} where b is a fraction.

13 In group \mathbf{C}, there are 6 girls and 8 boys.
In group \mathbf{D}, there are 3 girls and 7 boys.
A team is made by picking at random one child from group \mathbf{C} and one child from group \mathbf{D}.
(a) Complete the probability tree diagram.

(b) Work out the probability that there are two boys in the team.

After the first team has been picked, a second team is picked.
One child is picked at random from the children left in group \mathbf{C} and one child is picked at random from the children left in group \mathbf{D}.
(c) Work out the probability that there are two boys in each of the two teams.
$14 \mathscr{\delta}=\{$ positive integers less than 20$\}$
$A=\{x: x<12\}$
$B=\{x: 7 \leqslant x<16\}$
(a) List the members of $A \cap B$
C is a set such that $C \subset A$ and $\mathrm{n}(C)=3$
Given that all members of C are even numbers,
(b) list the members of one possible set C.

15 Use algebra to show that the recurring decimal $0.2 \dot{5} \dot{4}=\frac{14}{55}$
(Total for Question 15 is $\mathbf{2}$ marks)

16
Here are the first five terms of an arithmetic sequence.

7	10	13	16	19

Find the sum of the first 100 terms of this sequence.
\mathbf{A} and \mathbf{B} are two similar vases.

A

B

Diagram NOT
accurately drawn

Vase A has height 24 cm .
Vase B has height 36 cm .
Vase \mathbf{A} has a surface area of $960 \mathrm{~cm}^{2}$
(a) Work out the surface area of vase \mathbf{B}.

Vase B has a volume of $V \mathrm{~cm}^{3}$
(b) Find in terms of V, an expression for the volume, in cm^{3}, of vase \mathbf{A}.

Calculate the length of $P R$.
Give your answer correct to 3 significant figures.

19 The table gives information about the heights of some trees.

Height (\boldsymbol{h} metres)	Frequency
$0<h \leqslant 20$	15
$20<h \leqslant 35$	48
$35<h \leqslant 40$	21
$40<h \leqslant 50$	16

On the grid, draw a histogram for this information.

Diagram NOT accurately drawn
A, B, C and D are points on a circle.
$T D V$ is the tangent to the circle at D.
$A B=A D$
Angle $A D T=71^{\circ}$
Work out the size of angle $B C D$.
Give a reason for each stage of your working.

21 A solid is made from a hemisphere and a cylinder.
The plane face of the hemisphere coincides with the upper plane face of the cylinder.

Diagram NOT accurately drawn

The hemisphere and the cylinder have the same radius.
The ratio of the radius of the cylinder to the height of the cylinder is $1: 3$
Given that the solid has volume $792 \pi \mathrm{~cm}^{3}$
work out the height of the solid.
\qquad cm

22 The graph of $y=\sin x^{\circ}$ for $0 \leqslant x \leqslant 360$ is drawn on the grid.

(a) On the grid, draw the graph of $y=2 \sin (x+30)^{\circ}$ for $0 \leqslant x \leqslant 360$
(b) (i) Write $x^{2}-6 x+10$ in the form $\quad(x a)^{2}+b \quad$ where a and b are integers.
(ii) Hence, describe fully the single transformation that maps the curve with equation $y=x^{2}$ onto the curve with equation $y=x^{2}-6 x+10$
\qquad
\qquad
$23 A B C D$ is a kite with $A B=A D$ and $C B=C D$.
B is the point with coordinates $(10,19)$
D is the point with coordinates $(2,7)$
Find an equation of the line $A C$.
Give your answer in the form $p y+q x=r$ where p, q and r are integers.

24 A particle P is moving along a straight line that passes through the fixed point O. The displacement, s metres, of P from O at time t seconds is given by

$$
s=t^{3}-6 t^{2}+5 t-4
$$

Find the value of t for which the acceleration of P is $3 \mathrm{~m} / \mathrm{s}^{2}$

